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The frequency-dependent dielectric loss due to ion migration in a solvent with a given dielectric 
function E(W) is calculated explicitIy within the following framework: 

i) The solvent is treated in the dielectric continuum model 
ii) The Navier-Stokes equation is solved for the velocity field 
iii) The limiting cases of (a) large ion radius (weak coupling) and (b) point ions (strong 

coupling) are treated explicitly. 

The most clearcut prediction of the theory is that the incremental frequency-dependent 
conductivity is proportional to 0~''~ at high frequencies, the power law being independent of 
the form of E(w). For arbitrary frequencies, in the limits (a) and (b) above, the incremental 
frequency-dependent conductivity can be calculated explicitly given the dielectric function of 
the solvent. 

1 INTRODUCTION 

The problem of the high-frequency conductivity ~ ( o )  in dielectric media 
remains of considerable interest. By now, there are numerous experimental 
situations where power law behaviour at high frequencies, i.e. 

a(@) a w" (1.1) 
is found to represent the experimental data, n being often in the range 0.6-1.' 

Earlier work of Glarum (Ref. 2; see also Ref. 3) leads to n = ifor a model of 
dipolar relaxation assisted by defect arrival at the relaxing site. 

The purpose of the present paper is to report a calculation of the incre- 
mental frequency-dependent conductivity due to ion migration in a solvent 

t Permanent address: Department of Physics, University of Trieste, Italy. The contribution 
of M.P.T. to this work was carried out during a visit to Oxford in the Winter of 1977-78. This 
visit was supported by a NATO travel grant. 
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with a given dielectric function ~(o). We stress especially that, in contrast to 
earlier work in this area,”’ in all of which the solvent was assumed to be 
characterized by a single Debye relaxation process, the results presented below 
allow a given (e.g. measured) solvent 40) to be used as input. 

2 FIELD EQUATIONS AND NAVIER-STOKES EQUATION 

Below, it is convenient to w e  the approach and notation of Hubbard and 
Onsager’ (referred to below as HO), but their field equations for a simple 
Debye solvent will be generalized to apply to a given dielectric function 
~ ( u )  = ~’ (o )  + is”(w). This is achieved by writing the electrical dissipation 
function in the general form* 

0 
2F,1 = - - E”(w) I E 1’ 

471 

4n &“(a) = - -  

where E is the electric field while PD is the polarization arising from motion 
of the solvent molecules and is given by 

We follow HO by introducing the velocity field v, when Eq. (2.1) requires 
the generalization 

The field equations then take the form, with 

(2.4) 

Adding the hydrodynamic dissipation function to F,, leads to the Navier- 
Stokes equation, which in linearized form reads 

~ V * V  = Vp - 4 [E, x (V x P*) + Eo(V * P*)], (2.6) 
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ION MIGRATION AND DIELECTRIC LOSS I45 

where q is the shear viscosity of the solvent, p is the hydrodynamic pressure 
while Eo is 

(2.7) 

2.1 Description of velocity field 

At this stage, we return to the formalism of HO by expressing the velocity 
field v in terms of a scalar functionf(r) defined by 

v = jV x [f(r)(r x u)]. (2.8) 
The underlying reason for the form (2.8) is that it expresses the most general 
divergence free vector field v that is proportional to a specified constant 
vector u in a spherically symmetrical system, -u being the velocity of the 
ion whenf(r) is normalized to be unity as r + 03. 

The Navier-Stokes equation (2.6) then leads to a differential equation for 
F(z) = df/dr, namely 

z z -  - a. z -  - Po F(z)  - z - -  a1 z -  - P1 F(z)  = yz”’ (2.9) [ fZ I[ :z 3 [ :z I[ :z ] 
where z = -r“/a and y is an arbitrary constant of integration. The constants 
appearing in Eq. (2.9) are defined by: 

a0 = - 1, Po = +and 

b being given by 

e2 E(O) - &(a) 
16nq iw~’(0) ’ 

a=--- 

a1 = ! { I +  8 [49 + 8;l’’lj 

‘ - 8  - ‘{1 - [49 + 8;]1’2) 

(2.10) 

(2.11) 

(2.12) 

Eqs. (2.9)-(2.12) constitute the generalization of the results of HO to a gen- 
eral dielectric function for the solvent, the form of the equation (2.9) being 
identical to theirs, provided the quantities a and b are redefined according to 
Eqs. (2.10) and (2.12). 

One wishes now to solve forf(r) subject to the boundary conditions, for 
a migrating ion of radius R ,  

lim f(r) = 1, f(R) = 0. (2.13) 
r-m 
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The third boundary condition depends on an assumption about the tangential 
velocity at the surface of the migrating ion. Below we restrict ourselves to the 
case when the tangential velocity is zero at the ion surface r = R, which 
leads to 

-F($) = 0, (2.14) 

this being the appropriate boundary condition for the case of point ions 
( R  ---t 0) which is our major interest here. 

As pointed out by HO, the homogeneous form of Eq. (2.9), i.e. y = 0, can 
be solved in terms of hypergeometric functions, the mathematical detail being 
given in the Appendix for the limiting cases of (a) large ionic radii (weak 
coupling) and (b) point ions (strong coupling). 

2.2 

At this point, we must consider how the friction coefficient and the frequency- 
dependent ion mobility are related to the asymptotic form of the solution for 
F(z) .  As HO point out, the velocity field will resemble the Stokes form 
vo(co) + vl(co)/r far from the ion. Thus, the coefficient of l/r in the large r 
expansion of f ( r )  is related to the friction coefficient, [, by 

[ = +4nq Lt r f (r ) .  (2.15) 

The frequency-dependent ion mobility p(w), related directly to the incre- 
mental conductivity Aa(o), is given in terms of the friction coefficient by 

Friction coefficient and ion mobility 

r- w 

(2.16) 

To establish Eq. (2.16) the hydrodynamic force [(w)u is equated to the elec- 
trical force on the ion [E(O) + ~(w)]eE,,,/2~(0), and the mobility is defined 
as usual through u = pE,,, . 

3 LIMITING CASES OF LARGE IONIC RADIUS AND POINT IONS 

3.1 

As discussed in the Appendix, the differential Eq. (2.9) has solution in the 
range ( z I  > 1 of the form 

Large ionic radius (la/R41 e 1 )  

F>(4  = A,F,(z) + S>(Z) (3.1) 
where both F,(z) and g,(z) can be represented by descending series in l/z, 
these forms being given in the Appendix. For large ionic radius, i.e. such that 
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ION MIGRATION AND DIELECTRIC LOSS 147 

I R"/al >> 1, the leading terms in these series are all that is required to impose 
the boundary conditions (2.13) and (2.14). 

The friction coefficient is then determined through 

where P is polynomial of the second degree, which is given in the Appendix. 
The structure of the series (3.2) makes it clear that the friction coefficient, 

in this dielectric continuum model has a form such that 

This represents already some considerable simplification in that C involves 
three reduced quantities rather than five original quantities. Clearly compari- 
son of Eqs. (3.2) and (3.3) yields the precise form of H in the limit of weak 
coupling Iu/R41 + 1. 

Though, as we shall see below, the most interesting high-frequency 
results come from the strong coupling limit, we note here that for sufficiently 
large w, @/a) + [E(O)/E(CO)I and a -, (e2/l6nq)[c(0) - E ( C O ) ] / [ E ~ ( ~ ) ~ O ] ,  so 
that in this limit the friction coefficient is independent of the detailed form 
of E(O) for the solvent. 

3.2 Point ions (R+ 0) 

For the point ion limit, we require not only the solution (3.1) of Eq. (2.9) for 
l z l  > 1, but also the solution for IzI -= 1 

F<(Z)  = AlF,(Z) + S<:(Z), (3.4) 
which is regular at the origin. In the Appendix, forms of Fl(z) and g 4 ( z )  are 
given as ascending power series in z. In the outer region Iz 1 > 1, the solution 
(3.1) must be the analytic continuation of (3.4), which fixes the constants A ,  
and A 2  in terms of y. 

One next integrates Eq. (3.4) to obtain f(r), which, according to (2.13), 
must satisfyf(0) = 0 in this point ion limit, while its analytic continuation 
must satisfyf(oO) = 1. This latter condition suffices to determine y. The 
friction coefficient is found to again take the form of Eq. (3.3), with H now 
given, as R -, 0, by 

where a, is,given in Eq. (2.1 1). 
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The high-frequency behaviour in this limit is of considerable interest. As 
noted above, a a(iw)- ’, and b/u -+ E(O)/E(OO) for sufficiently large o. Thus, 
Eq. (3.5) she$ that H, and hence the inverse friction coefficient, goes like 
0P4. Thus, the incremental high-frequency conductivity Au(o) takes the 
form (1.1) with n = $. We stress that this result is independent of the detailed 
form of E(w) for the pure solvent. 

4 DISCUSSION AND SUMMARY 

The main conclusions of this model based on a dielectric continuum assump- 
tion are: 

i) For all coupling strengths, the frequencydependent ion mobility has 
the form 

E(0) + E(W) a b H - -  
p(w) = 12nqR~(O) (R47 u )  

where a and b are determined in terms of pure solvent properties by Eqs. 
(2.10) and (2.12). The form of Eq. (2.10) makes it clear that the quantity 
a/R4 plays the role of an electrical coupling parameter between the ion and the 
solvent. The two limiting cases of large ionic radius and point ions thus 
correspond to weak and strong coupling respectively, the weak coupling 
results given being for the “no slip” type of boundary condition. 

ii) For strong coupling, and suitably high frequencies, the incremental 
high-frequency conductivity Aa(o) has the power law form (1.1) with n = a. 
Since this exponent is different from that of Debye relaxation assisted by 
defect arrival at the relaxing site, when n = 3 (see Refs. 2 and 3) the exponent 
clearly depends on the mechanism operating. 

It would seem of considerable interest to undertake an experimental pro- 
gramme to test whether the predictions of the dielectric continuum model 
apply to real liquid systems with ions migrating. One or two cautionary 
remarks seem called for. First, the exponent n = seems low compared with 
the values currently obtained on many dielectric materials. Therefore the 
separation of solvent contribution will have to be done with great care. 
Secondly, it would clearly be simplest if one type of ion only migrates. 
Two cases come to mind as possibilities here. The first is that in water as 
solvent, when dilute concentrations of ammonium halides are introduced, the 
ammonium ions are believed to replace water molecules in the structure 
with relatively small local distortion. In contrast the halogen ions have a very 
marked effect on the structure as seen by X-ray diffraction and may well be 
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ION MIGRATION AND DIELECTRIC LOSS 149 

more mobile. The second possibility is in superionic conductors, where above 
the transition temperature, say in CaF,, the anions show marked mobility. It 
is not clear to us presently, whether the assumptions of the model adopted 
here will be validated in these systems, but we consider that investigation of 
this point may well be of interest. 

Appendix 

DETERMINATION OF VELOCITY FIELD 

The solution of the differential Eq. (2.9) for 
origin, is 

F < ( Z )  = AlFl(Z) -t 

zI < 1, which is regular at the 

where A,  is an arbitrary constant and 

The solution for 1 z I > 1, which is regular at infinity, is immediately found by 
the transformation z -+ l / z  in the differential equation, and reads 

where A z  is another arbitrary constant, and 
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150 M. P. TOSI AND N. H. MARCH 

1 Large ionic radius 

The boundary condition (2.14) yields 

A, = -g>(-R4/a)/F 2( - R4/a) (A.7) 

while the boundary conditions (2.13) can be used to determine y through 

sRm drF,( - r4/a) = 1. (A.8) 

Equation (2.15) yields the friction coefficient as 

4n ivy( a) 1'2 

(a0 + +>(So + 4) [ =  --  

47 + 4bla a 2602828 + 342592bla - 1328(b/~)~ = 67qR 1 + _ -  [ 315 R4 315.385.377 

+ (A.9) 

This reduces in the limit o = 0 to the result reported by HO to order a/R4. 

2 Point ions 

The solution (A. I)  for I z I < 1 already satisfies the boundary condition (2.14). 
The two arbitary constants A and A, are determined by requiring that the 
external solution (A.4) coincide with the analytic continuation of the internal 
solution (A. 1). The latter is calculated by the Barnes contour integral 
method," with the result 
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ION MIGRATION AND DIELECTRIC LOSS 

where we have used the standard symbol for the hypergeometric function. 
Therefore, 

151 

A similar analytic continuation of f(r) and use of the boundary conditions 
(2.13) yields the value of the arbitrary constant y :  

(A.12) 

The value (3.5) of the friction coefficient follows by using Eq. (A.9). 
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